Copied to
clipboard

G = C102⋊C4order 400 = 24·52

3rd semidirect product of C102 and C4 acting faithfully

metabelian, supersoluble, monomial

Aliases: C1023C4, C5⋊D5.7D4, (C2×C10)⋊1F5, C52(C22⋊F5), C22⋊(C5⋊F5), C10.20(C2×F5), C526(C22⋊C4), (C2×C5⋊D5)⋊6C4, (C2×C5⋊F5)⋊2C2, C2.7(C2×C5⋊F5), (C5×C10).33(C2×C4), (C22×C5⋊D5).4C2, (C2×C5⋊D5).23C22, SmallGroup(400,155)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C102⋊C4
C1C5C52C5⋊D5C2×C5⋊D5C2×C5⋊F5 — C102⋊C4
C52C5×C10 — C102⋊C4
C1C2C22

Generators and relations for C102⋊C4
 G = < a,b,c | a10=b10=c4=1, ab=ba, cac-1=a3b5, cbc-1=b3 >

Subgroups: 1048 in 136 conjugacy classes, 32 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C23, D5, C10, C10, C22⋊C4, F5, D10, C2×C10, C52, C2×F5, C22×D5, C5⋊D5, C5⋊D5, C5×C10, C5×C10, C22⋊F5, C5⋊F5, C2×C5⋊D5, C2×C5⋊D5, C102, C2×C5⋊F5, C22×C5⋊D5, C102⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C2×F5, C22⋊F5, C5⋊F5, C2×C5⋊F5, C102⋊C4

Smallest permutation representation of C102⋊C4
On 100 points
Generators in S100
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)
(1 30 21 50 14 7 18 40 44 34)(2 26 22 46 15 8 19 36 45 35)(3 27 23 47 11 9 20 37 41 31)(4 28 24 48 12 10 16 38 42 32)(5 29 25 49 13 6 17 39 43 33)(51 100 78 62 88 56 95 73 67 83)(52 91 79 63 89 57 96 74 68 84)(53 92 80 64 90 58 97 75 69 85)(54 93 71 65 81 59 98 76 70 86)(55 94 72 66 82 60 99 77 61 87)
(1 75 48 65)(2 77 47 63)(3 79 46 61)(4 71 50 69)(5 73 49 67)(6 78 43 62)(7 80 42 70)(8 72 41 68)(9 74 45 66)(10 76 44 64)(11 52 35 55)(12 54 34 53)(13 56 33 51)(14 58 32 59)(15 60 31 57)(16 81 40 97)(17 83 39 95)(18 85 38 93)(19 87 37 91)(20 89 36 99)(21 92 28 86)(22 94 27 84)(23 96 26 82)(24 98 30 90)(25 100 29 88)

G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,30,21,50,14,7,18,40,44,34)(2,26,22,46,15,8,19,36,45,35)(3,27,23,47,11,9,20,37,41,31)(4,28,24,48,12,10,16,38,42,32)(5,29,25,49,13,6,17,39,43,33)(51,100,78,62,88,56,95,73,67,83)(52,91,79,63,89,57,96,74,68,84)(53,92,80,64,90,58,97,75,69,85)(54,93,71,65,81,59,98,76,70,86)(55,94,72,66,82,60,99,77,61,87), (1,75,48,65)(2,77,47,63)(3,79,46,61)(4,71,50,69)(5,73,49,67)(6,78,43,62)(7,80,42,70)(8,72,41,68)(9,74,45,66)(10,76,44,64)(11,52,35,55)(12,54,34,53)(13,56,33,51)(14,58,32,59)(15,60,31,57)(16,81,40,97)(17,83,39,95)(18,85,38,93)(19,87,37,91)(20,89,36,99)(21,92,28,86)(22,94,27,84)(23,96,26,82)(24,98,30,90)(25,100,29,88)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100), (1,30,21,50,14,7,18,40,44,34)(2,26,22,46,15,8,19,36,45,35)(3,27,23,47,11,9,20,37,41,31)(4,28,24,48,12,10,16,38,42,32)(5,29,25,49,13,6,17,39,43,33)(51,100,78,62,88,56,95,73,67,83)(52,91,79,63,89,57,96,74,68,84)(53,92,80,64,90,58,97,75,69,85)(54,93,71,65,81,59,98,76,70,86)(55,94,72,66,82,60,99,77,61,87), (1,75,48,65)(2,77,47,63)(3,79,46,61)(4,71,50,69)(5,73,49,67)(6,78,43,62)(7,80,42,70)(8,72,41,68)(9,74,45,66)(10,76,44,64)(11,52,35,55)(12,54,34,53)(13,56,33,51)(14,58,32,59)(15,60,31,57)(16,81,40,97)(17,83,39,95)(18,85,38,93)(19,87,37,91)(20,89,36,99)(21,92,28,86)(22,94,27,84)(23,96,26,82)(24,98,30,90)(25,100,29,88) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100)], [(1,30,21,50,14,7,18,40,44,34),(2,26,22,46,15,8,19,36,45,35),(3,27,23,47,11,9,20,37,41,31),(4,28,24,48,12,10,16,38,42,32),(5,29,25,49,13,6,17,39,43,33),(51,100,78,62,88,56,95,73,67,83),(52,91,79,63,89,57,96,74,68,84),(53,92,80,64,90,58,97,75,69,85),(54,93,71,65,81,59,98,76,70,86),(55,94,72,66,82,60,99,77,61,87)], [(1,75,48,65),(2,77,47,63),(3,79,46,61),(4,71,50,69),(5,73,49,67),(6,78,43,62),(7,80,42,70),(8,72,41,68),(9,74,45,66),(10,76,44,64),(11,52,35,55),(12,54,34,53),(13,56,33,51),(14,58,32,59),(15,60,31,57),(16,81,40,97),(17,83,39,95),(18,85,38,93),(19,87,37,91),(20,89,36,99),(21,92,28,86),(22,94,27,84),(23,96,26,82),(24,98,30,90),(25,100,29,88)]])

34 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A···5F10A···10R
order12222244445···510···10
size112252550505050504···44···4

34 irreducible representations

dim111112444
type+++++++
imageC1C2C2C4C4D4F5C2×F5C22⋊F5
kernelC102⋊C4C2×C5⋊F5C22×C5⋊D5C2×C5⋊D5C102C5⋊D5C2×C10C10C5
# reps1212226612

Matrix representation of C102⋊C4 in GL8(𝔽41)

3535000000
640000000
000400000
001350000
00001000
00000100
00000010
00000001
,
66000000
351000000
000400000
001350000
000040700
000034700
00001403535
000001640
,
00100000
00010000
400000000
351000000
00001932640
0000190040
000070019
000034273222

G:=sub<GL(8,GF(41))| [35,6,0,0,0,0,0,0,35,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,35,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[6,35,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,35,0,0,0,0,0,0,0,0,40,34,1,0,0,0,0,0,7,7,40,1,0,0,0,0,0,0,35,6,0,0,0,0,0,0,35,40],[0,0,40,35,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,19,19,7,34,0,0,0,0,32,0,0,27,0,0,0,0,6,0,0,32,0,0,0,0,40,40,19,22] >;

C102⋊C4 in GAP, Magma, Sage, TeX

C_{10}^2\rtimes C_4
% in TeX

G:=Group("C10^2:C4");
// GroupNames label

G:=SmallGroup(400,155);
// by ID

G=gap.SmallGroup(400,155);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,964,496,5765,2897]);
// Polycyclic

G:=Group<a,b,c|a^10=b^10=c^4=1,a*b=b*a,c*a*c^-1=a^3*b^5,c*b*c^-1=b^3>;
// generators/relations

׿
×
𝔽